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ACCOUNTING FOR MODEL UNCERTAINTY
IN THE PREDICTION OF UNIVERSITY
GRADUATION RATES
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Empirical analysis requires researchers to choose which variables to use as controls
in their models. Theory should dictate this choice, yet often in social science there
are several theories that may suggest the inclusion or exclusion of certain variables
as controls. The result of this is that researchers may use different variables in their
models and come to disparate conclusions with respect to predicted effects and their
statistical significance. In such cases one is uncertain of which particular set of re-
gressors forms the model that represents the data. The approach used below ac-
counts for uncertainty in variable selection by using Bayesian model averaging
(BMA). Accounting for uncertainty, we demonstrate that BMA provides better out-of-
sample prediction for university graduation rates than results based on alternative
variable selection methods.
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INTRODUCTION

Graduation rates are an increasingly important measure of institutional suc-
cess in an era in which students, media, legislators, and administrators expect
greater accountability for educational outcomes. The problem is how to accu-
rately assess institutional performance. For instance, simply comparing gradua-
tion rates of two institutions fails to account for the differences in mission, cost,
and resources available to each institution. One would expect that institutions
with more financial resources and better prepared students will have more posi-
tive student outcomes as demonstrated by higher student retention and gradua-
tion rates. Controlling for these outside factors is thus crucial to assessing per-
formance across institutions.

A common method that is used by both U.S. News and Mortenson (1997)
to evaluate an institution’s contribution to student outcomes is to compare an
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institution’s actual graduation rate with that predicted by a model that controls
for the characteristics of the student body and institution. Institutions that do
better than their predicted rate are viewed as adding value to student outcomes;
those which achieve rates less than predicted are viewed as inefficient. Several
states, including Virginia, North Carolina, and New York, have examined link-
ing this measure of performance to the funding provided to state institutions in
order to reward efficiency. In 1999, the Virginia State Council of Higher Educa-
tion adopted that funds be set aside to reward institutions with graduation rates
that are better than what is statistically predicted based on entering student char-
acteristics.

The difference between the actual and predicted graduation rates is a testa-
ment not only to the contribution of the institution to education but also to the
accuracy of the model that is used to make the prediction. A poorly specified
model that ignores important student and institutional characteristics will result
in large errors that can be mistakenly associated with either poor or excellent
performance by educational institutions. The accurate estimation of individual
coefficients is also important to institutions in that factors that the institution
controls (student to faculty ratio, expenditures per student, etc.) can be modified
to improve educational outcomes. Thus, to properly evaluate institutional perfor-
mance one must be able to make accurate predictions.

The problem, as Porter (2000) notes in his analysis of the robustness of the
predictions made by U.S. News, is that predicted graduation rates vary based on
the variables included in the model used to make the prediction. The model
used by U.S. News to predict 6-year graduation rates for Doctoral I universities
controls for each institution’s average Scholastic Aptitude Test (SAT) score
and the logarithm of average expenditures per student. Estimating this model
specification, Porter finds that the coefficient and standard error for SAT score
are .105 and .008, respectively, suggesting a positive and statistically significant
relationship. The coefficient and standard error for spending were 3.556 and
2.029, respectively, suggesting a positive yet statistically insignificant relation-
ship. By adding to U.S. News’ model specification control variables that mea-
sure student quality and institutional constraints, Porter displays that variable
selection influences predicted effects of coefficients as well as their standard
errors. In column four of Porter’s Table 1, he reports that the effect of SAT is
reduced to .084, and the effect of spending is increased to 5.623. Further, the
coefficient for spending is now statistically significant. As Porter points out,
inclusion of these additional variables affects predicted graduation rates and
creates questions over their reliability and usefulness in policymaking.

Researchers and policymakers are left uncertain of which model and its pre-
diction are those that represent the factors that causally determine graduation
rates, that is, the “true” model. This is particularly difficult given that research
into retention and graduation rates suggests that several factors at the individual
and institutional level influence student outcomes. With no unique theory to
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guide their choice, different researchers often choose different variables from
among a theoretically interesting list of candidates to include in their model
specification. The choice of this subset of variables may be based on the focus
of the article or on the differing theoretical importance various researchers put
on these variables.

An alternative is to use statistical methods to select from the candidate vari-
ables a subset to use as controls. Draper and Smith (1981), Weisberg (1985),
and Miller (1990) discuss several statistical methods of variable selection in
applied analysis. Although the selection method varies among researchers, fre-
quently, candidate variables are screened by removing those with small t statis-
tics. More formalized methods choose the variables from the list of candidates
that optimize some prediction criterion, such as maximizing the adjusted R 2 or
minimizing Mallow’s Cp. Other methods rather than regressing over all subsets
of models, use stepwise methods of variable selection. Efroymson’s stepwise
regression starts from an empty subset and adds at each iteration the variable
that gives the largest reduction in the residual sum of squares, while accounting
for partial correlations to see if any variables in the subset should be dropped.
Olejnik, Mills, and Keselman (2000) review these three methods in the context
of applied research in education. These methods and their variants are often
computed in standard statistical packages, so it is quite easy for the researcher
to use any of these methods to select variables. A problem is that none of these
methods have any theoretical foundation. Therefore, researchers are left with an
arbitrary choice between methods, which may lead to different methods being
used, resulting in different variables being selected and hence different predic-
tions.

With respect to predicting graduation rates, it is evident that model specifica-
tion influences predictions and the estimated effects of coefficients. Without
knowing which model specification is the true model that causally explains
graduation rates, it is inherently risky to base inference on the predictions from
any single model. To account for this uncertainty in variable selection we apply
Bayesian model averaging (BMA) to the prediction of graduation rates at Doc-
toral I universities. Rather than basing predictions on a single model, as is the
case with standard variable selection methods, BMA determines estimated ef-
fects by taking a weighted average of estimates over models whose specification
is supported by the data. The advantage of this method is that it provides a
neutral method of variable selection that incorporates the uncertainty in this
selection in a manner that improves the accuracy of out-of-sample predictions.

BAYESIAN MODEL AVERAGING (BMA)

BMA is a relatively new method developed by Bayesian statisticians (Draper,
1995; Raftery, 1995) to account for uncertainty in model specification. This
method has been applied in several fields including political science (Bartels,
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1997), sociology (Raftery, 1995), finance (Avramov, 2002), environmental sci-
ence (Lamon and Clyde, 2000), and medical science (Volinsky, Madigan, Raft-
ery, and Kronmal, 1997). The basis for this method lies in the work of Leamer
(1978) in which he points out that “ambiguity over the model should dilute the
information about regression coefficients, since part of the evidence is spent to
specify the model” (p. 91). The solution to this problem, Leamer believed, could
be found by using a Bayesian perspective. Leamer writes that a “Bayesian ap-
proach is sufficiently flexible that, with suitable alterations, specification searches
can be made legitimate, or at least understandable” (p. 2). With Leamer’s frame-
work and advances in computing, Raftery among others devised the alterations,
discussed below, necessary to implement BMA.

A Bayesian perspective provides a natural way of dealing with uncertainty in
that unknown parameters of interest, such as regression coefficients, are ex-
pressed in terms of probability. Rather than generating a single point estimate
of the coefficients using classical means, Bayesian analysis generates the entire
probability distribution of the coefficients. This allows one to examine the ex-
tent, in terms of probability, to which the data support one model relative to
another versus simply viewing a model as either better or worse than an alterna-
tive. The basis of Bayesian methods is Bayes theorem:

P(β/D) = P(D/B)P(B)
P(D)

(1)

Bayesian analysis requires the researcher to specify their beliefs and uncertainty
in the parameters of interest β prior to observing the data D. These beliefs are
captured in the prior probability density P(β). P(D/β) is known as the likelihood
and represents the probability of observing the data D given that the parameter
estimates β are true. P(D) is the unconditional probability of observing the data
whether β is true or not. Observing data D, we update our beliefs about the
distribution of the parameter estimates using Bayes theorem to obtain the poste-
rior distribution P(β/D). For a further introduction to Bayesian econometrics see
Zelner (1971) and Leamer (1978).

In the situation in which several models {M1 . . . MK} are theoretically possi-
ble, it is risky to base inference on the point estimates from a single model Mk.
Bayesian model averaging allows us to account for this type of uncertainty.
Hoeting, Madigan, Raftery, and Volinsky (1999) provide an excellent tutorial
of these methods. To estimate the effect of a parameter in the presence of model
uncertainty, one calculates the posterior distribution of the parameter given the
data as:

P(β/D) = ∑
K

k=1

P(β/Mk,D)P(Mk/D) (2)
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The posterior distribution P(β/D) is a weighted average of the posterior distri-
bution under each of the K models, with weight equal to the posterior model
probabilities P(Mk/D). The posterior model probability (PMP) represents the
probability that model Mk is the true model that causally explains the data when
conditioning on the data and assuming that one of the K models is the true
model. By Bayes’ rule and the law of total probability, the posterior model
probability is

P(Mk /D) = P(D/Mk)P(Mk)

∑
K

l=1

P(D/Ml)P(Ml)

(3)

where P(D/Mk) is the likelihood and P(Mk) is the prior probability that model
Mk is the true model, given one of the K models is the true model. If a noninfor-
mative prior is assumed in which each of the K models are equally likely to be
the true model (P(M1) = . . . P(Mk) = 1/K), then the posterior model probability
becomes:

P(Mk /D) = P(D/Mk)

∑
K

l=1

P(D/Ml)

(4)

The integrated likelihood is given by

P(D/Mk) = ∫P(D/βk,Mk)P(βk /Mk)dβk (5)

where βk is a vector of parameters (coefficients and variance), P(D/βk,Mk) is the
likelihood and P(βk /Mk) is the prior density of the parameters under model Mk.
Using the Laplace method for integrals, Raftery (1995) shows that the integrated
likelihood of model k is approximately equal to exp(−1⁄2 BICk) where BICk is
the Bayesian information criterion (BIC) of model k. Schwarz (1978) shows that
the BIC is

BICk = −2log(L̂) + dklog(N) (6)

with L̂ equal to the maximized likelihood under model k, dk is the number of
parameters in model k, and M is the sample size. The second term penalizes
more complex models. Using the approximation of P(D/Mk) = exp(−1⁄2 BICk)
and the prior assumption that models are equally likely, the posterior model
probability (PMP) becomes:
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P(Mk /D) �
exp�−1

2
BICk�

∑
K

l=1

exp�−1
2
BICl�

(7)

Once the posterior distribution has been determined, one can summarize the
effects of the parameters on the dependent variable by calculating the posterior
mean, posterior variance, and posterior effect probabilities. Raftery (1995) re-
ports the posterior mean and variance can be approximated by

E(β1/D,β1 ≠ 0) � ∑
A1

β̂1(k)
2
P(Mk /D)

Var(β1/D,β1 ≠ 0) � ∑
A1

[Var(k) + β1(k)
2]P(Mk /D) − E(β1/D,β1 ≠ 0)2 (8)

where β̂1(k) and Var(k) are the maximum likelihood estimates and variance of
β1 under model k, and the summation is over models that include β1 (set A1).
The posterior effect probability measures the probability that a particular param-
eter is part of the true model. It is the sum of the posterior model probabilities
for models that include β1.

P(β1 ≠ 0/D) = ∑
A1

P(Mk /D) (9)

To implement BMA one must specify the universe of models to average over,
where a model refers to a particular set of regressors. Here it is assumed that
we have n candidate variables to include in our regression, of which we are
unsure of the combination that forms the true model. Thus, there are 2n different
models that are possible and make up the set of models to consider. With 24
regressors, the summation in Eq. (2) would be over more than 16 million models
and involve calculating the integrals implicit to Eq. (2). Hoeting et al. (1999)
outline two ways in which to manage the summation. The first, which is used
in the analysis below, discards models that are not supported by the data. The
second method, which is discussed by Madigan and York (1995), uses Markov
chain Monte Carlo model composition to approximate Eq. (2).

Madigan and Raftery (1994) argued that models not supported by the data
should not be included in Eq. (1) and appeal to what they refer to as Occam’s
window to discard models. The first restriction of Occam’s window is to ex-
clude models that predict the data sufficiently less than predictions of the best
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model, where predictions are based on the posterior model probability (PMP)
of each model P(Mk/D). As discussed earlier, the PMP is the posterior probabil-
ity that model Mk is the true causal model given the data and is approximated
using the BIC as specified in Eq. (7). Models in set A′ are included to be aver-
aged over

A′ = �Mk:
max PMPl

PMPk

≤ C� (10)

where C is a cutoff chosen by the researcher. The cutoff used in the analysis
below is 20, which Raftery (1995) discusses as providing “strong” evidence in
favor of one model over another. Set A′ includes models with PMPs that are at
least 1/20th of the model that is highest. A second, optional, restriction may include
the removal of complex models that receive less support than simpler models
that are subsets. If a model within set A′ is contained in another model and the
simpler model has higher posterior model probability, then the more complex
model is excluded. This method of excluding models Hoeting et al. (1999) re-
port often reduces the number of models to average over to fewer than 10.

To apply BMA to the data below we use the S-plus function bicreg developed
by Raftery and Volinsky (1996). Hoeting et al. (1999) provide a discussion of
where bicreg and other S-plus programs to implement BMA are publicly avail-
able on the Internet. Bicreg calculates for linear regression models the posterior
mean, variance, and effect probabilities as well as reports the PMPs of the mod-
els averaged over. The function uses the BIC of each model to approximate the
PMP of each. It then applies the restrictions of Occam’s window to specify a
reduced set of models that are supported by the data. The results below use only
the first restriction of Occam’s window that models with PMPs significantly
less than that of the best model be eliminated. The decision to use only the first
restriction is based on Raftery’s (1995) suggestion that this restriction alone
provides better prediction, whereas both restrictions together are more useful in
reporting uncertainty.

Once the dependent variable and the n candidate independent variables that
form the 2n models are chosen, the researcher must specify for each model a
prior probability that the model considered is the true model. This prior should
reflect the researcher’s beliefs prior to examining the data. In some instances
researchers may have strong a priori information that suggests the inclusion of
one variable or another, in which case the prior probability should reflect these
beliefs. Often though there is little information about the relative plausibility of
models. Hoeting et al. (1999) suggest in this situation that noninformative priors,
each model a priori is equally likely, is a neutral choice.
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EMPIRICAL ANALYSIS

Previous research (Astin, 1997; Kroc, Howard, and Hull, 1995; Mortenson,
1997; Murtaugh, Burns, and Schuster, 1999; Porter, 2000; Smith, Edminster,
and Sullivan, 2001) that examined the prediction of university graduation rates
make a strong assumption: the variables they select to form their models are
those that causally explain the data. As Porter’s results make clear, the choice
of independent variables significantly influences predictions of graduation rates.
What these results fail to make clear is which model specification is the true
model specification that causally explains the data. The reporting of confidence
intervals and standard errors of the estimates does not account for the effects of
uncertainty in model specification as they are explicitly based on the results
from a single model.

The purpose of the present analysis is to account for uncertainty in variable
selection when modeling the 6-year graduation rate at Doctoral I universities.
Appropriate variables to consider as controls are those measures that have been
theoretically (Astin, 1993; Pascarella and Terenzini, 1991; Tinto, 1987) linked
to educational persistence and graduation. Our selection of candidate variables
to control for is guided by Astin’s (1991) Input-Environment-Output (IEO)
model. Influencing outcomes such as graduation rates are the personal qualities
of the student body (inputs) and the environment in which students interact. The
relationship among these variables is often complex in that controlling for one
effect may influence the effect of another. Including both types of effects is thus
important to predicting student outcomes.

The characteristics of an institution’s student body provide measures that we
can use to control for the quality of an institution’s inputs. One would expect
that institutions with well-prepared students would have high graduation rates.
Astin (1991) categorizes the types of student input measures as those that de-
scribe the demographic characteristics, cognitive functioning, aspirations and
expectations, self-ratings, values and attitudes, behavioral patterns, and educa-
tional background of students. Also relevant to the attainment of graduates is
the manner and method of production at each institution. For instance Tinto
(1987) finds that environments that support student integration into the academic
community encourage student retention and subsequent graduation. The amount
of resources and type of institution (size, control, mission, religious affiliation,
etc.) are other factors that determine the environment.

While theory suggests the importance of various input and environmental
factors on graduation rates, it does not suggest which operational measures of
these factors should be included as control variables in our model specification.
There is no single measure of these effects; therefore, researchers are confronted
with a variable selection problem. The choice is further complicated by theory
that is unclear to a variable’s effect when controlling for others. For instance,
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Porter (2000) stresses the necessity of including variables that control for race
in the prediction of graduation rates, and Tinto (1987) discusses that condition-
ing on college preparation reduces the effects of racial variables. The result of
this is that different researchers (Astin, 1997; Kroc et al., 1995; Mortenson,
1997; Murtaugh et al., 1999; Porter, 2000; Smith et al., 2001) select different
variables in their model specification of graduation rates.

The variables used in our analysis of 6-year graduation rates are roughly
categorized as measures of the background of the student body, institutional
control and setting, and the quality of the institution. There are 24 control vari-
ables that we consider as candidates to form the model that generates the data.
These variables were selected based on theory provided by Astin’s (1991) IEO
model, their past use (Astin, 1997; Kroc et al., 1995; Porter, 2000) to predict
graduation rates, and data availability. Several variables are included to capture
each of these effects, because theory does not suggest a unique set of variables
to capture the influence of student inputs and institutional environment. We
allow the data to speak to which variables should be included and will account
for model uncertainty in reporting our results. The variables are drawn from the
online version of U.S. News Americas Best Colleges 2002 and the Integrated
Postsecondary Education Data System (IPEDS). A summary of variable defini-
tions and their source is provided in Table 1. Our sample, with no missing
observations, consists of 184 Doctoral I universities.

Capturing the demographics of the student body are variables that include the
percentage of the student body that are African American, Asian, Native Ameri-
can, and Hispanic, along with the percentage that are male, the average age,
and the percentage of out-of-state students. Student preparation for college also
influences graduation rates. Controlling for this are variables that measure the
percentage of the student body in the top 10% of their high school class, the
SAT score of the lowest quartile, and the SAT score of the highest quartile.

Environmental factors we consider reflect the effects of organizational struc-
ture and geographic setting. Indicator variables for public versus private schools,
religious versus nonreligious affiliation, and urban versus nonurban are included
in the analysis along with the total enrollment. In addition, we include several
variables to capture the quality of the institution and the level of student integra-
tion into the academic community. Measures of the quality of the institution are
the percentage of alumni who give, per-student expenditures, acceptance rate,
and weighted price. The weighted price is the weighted sum of tuition and fees
for in-state and out-of-state students weighted by the percentage of in-state and
out-of-state students respectively. Faculty quality is measured by the percent-
ages of full-time faculty and faculty with a PhD. The role of integration is
measured by the student-to-faculty ratio, the percentage of classes with less
than 20 students, the percentage of classes with more than 50 students, and the
percentage of the student body that lives in residence halls.



34 GOENNER AND SNAITH

TABLE 1. Description and Source of Candidate Variables

Predictor Description Mean Std. Dev. Sourcea

AfricaAm % African American 8.049 9.6611 IPEDS FA2000.DAT
NativeAm % Native American 0.598 1.036 IPEDS FA2000.DAT
Asian % Asian 7.223 7.425 IPEDS FA2000.DAT
Hispanic % Hispanic 4.946 5.932 IPEDS FA2000.DAT
Enroll Undergraduate Enrollment 17512.7 10434.4 IPEDS IC98 SRV.DAT
OutState % Out of State 29.272 25.853 USNWR
Age Average Age of Undergraduates 20.891 1.168 USNWR
FacPhD % of Faculty with PhD 89.136 8.010 USNWR
Stud/Fac Student to Faculty Ratio 14.853 3.997 USNWR
Class20 % of Classes under 20 Students 46.071 12.427 USNWR
Class50 % of Classes above 50 Students 10.980 6.075 USNWR
FtFaculty % of Faculty Full-Time 88.473 8.574 USNWR
TopTen % in Top Ten Percent of H.S. Class 38.549 25.378 USNWR
AccptRt Acceptance Rate 66.245 20.447 USNWR
Alumni Alumni Giving Rate 18.511 10.085 USNWR
StExp Per Student Expenditures 21398.8 16469.6 IPEDS F9596-B.DAT
LowSat SAT Score of lowest quartile 1050.89 132.859 USNWR
HighSat SAT Score of highest quartile 1258.70 119.809 USNWR
WtPrice Tuition and fees 10758.9 8130.38 IPEDS IC2000.DAT
ResHall % of Undergraduates in Residence Halls 46.1218 24.2025 IPEDS IC2000.DAT
Male % Male 49.4431 8.833 IPEDS EF98 ANR.DAT
Public 1 if Public School, 0 otherwise 0.630 0.484 IPEDS FA2000.DAT
Religion 1 if Religiously Affiliated, 0 otherwise 0.136 0.344 IPEDS FA2000.DAT
Urban 1 if in Large City or in Fringe, 0 otherwise 0.435 0.497 IPEDS FA2000.DAT

aUSNWR: U.S. News and World Report America’s Best Colleges 2002 rankings. Web Address:
http://www.usnews.com/usnews/edu/college/rankings/ranknatudoc.htm. IPEDS: Integrated Postsec-
ondary Education Data System. Web Address: http://nces.ed.gov/ipeds.

To account for uncertainty in the prediction of 6-year graduation rates at
Doctoral I universities, we apply bicreg to our data, which consists of graduation
rates and 24 candidate-independent variables for 184 institutions. This deter-
mines which of the more than 16 million models are supported by the data,
which is defined as models whose PMP are within 1/20th of that with the highest
PMP. Using the estimates from these models, weighted by each model’s PMP,
the program produces predictions that account for uncertainty in model specifi-
cation. To compare predictions made by averaging over several models with
those that are based on a single model, we estimate three models that are speci-
fied using three variable selection techniques, which include minimizing Mal-
low’s Cp, maximizing adjusted R2, and Efroymson’s stepwise method.

To assess the out-of-sample predictive performance of BMA estimates against
those of standard variable selection methods, which select a single model, we
randomly split the data into two subsets containing one half of the data. The
first set was used to build each model and generate the corresponding coefficient
estimates, which were then used to make predictions for data in the second set.
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Predictive performance was evaluated by comparing the predictive mean
squared error of the various methods. Predictive mean squared error (MSE) is

1
N

∑
N

i=1

(Yi − Ŷi)
2

where Yi is each of the N graduation rates in the prediction subset, and Ŷi is the
predicted mean of graduation rates from each method. The predicted values are
found by multiplying the matrix of covariates in the prediction subset with the
estimates derived from using the building set of data.

RESULTS

Our results display evidence of model uncertainty in the prediction of gradua-
tion rates. Fifty-six models were selected by BMA that were within Occam’s
window. The 10 models with highest PMP appear in Table 2. The model with
the highest PMP only accounted for 7 percent of the total posterior model proba-
bility, which is to say that the data support several models as possibly being the
true model. Choosing any single model to base predictions on in this case is
inherently risky. Our estimates generated by BMA account for the uncertainty
in model specification by averaging over the estimates of each of the 56 models,
with the weight of each estimate given by its PMP. Therefore, estimates from
models with a higher PMP receive more weight.

Table 3 provides the posterior mean, standard deviation, and effect probabili-
ties for each of our estimated coefficients. The first two values are similar in
interpretation to the coefficient and standard error reported in standard analyses.
The latter value, the PMP, represents the posterior probability that the coeffi-
cient is not equal to zero. Raftery (1995) provides a rough guide to the signifi-
cance of posterior effect probabilities in citing 50–75%, 75–95%, 95–99%, and
100% as weak, positive, strong, and very strong evidence of a variable having
an effect. From our results, we see that six variables—Native American, age,
top 10, low SAT, male, and urban—each have high posterior effect probabili-
ties, which indicate positive evidence for each having an effect. Three other
variables—religion, faculty PhD, and alumni giving—received weak to some-
what less than weak support as having an effect. Nine variables had a posterior
effect probability equal to zero, which means they were not selected in any of
the 56 models averaged over. For these variables there is evidence against them
having an effect on graduation rates.

The estimated effects for the nine variables that received support for predict-
ing graduation rates are consistent with what theory suggests. Similar to the
empirical findings of other researchers (Astin, 1997; Kroc et al., 1995; Morten-
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TABLE 3. Results of BMA Applied to the Prediction of 6-Year Graduation Rates

Bayesian Model Averaging

Predictor Mean β/D Std Error β/D Pr(β ≠ 0/D)

Constant 86.79 17.82 100
AfricaAm 0 0 0
NativeAm −1.256 0.6971 86
Asian 0 0 0
Hispanic 0 0 0
Enroll 0.00001 0.00004 12
OutState 0.0191 0.0346 29
Age −4.161 0.5665 100
FacPhD 0.0848 0.1083 46
Stud/Fac 0 0 0
Class20 0 0 0
Class50 0.0134 0.0568 7
FtFaculty 0 0 0
TopTen 0.1568 0.0443 100
AccptRt 0 0 0
Alumni 0.0854 0.1108 45
StExp −0.000003 0.00002 4
LowSat 0.0619 0.012 100
HighSat 0 0 0
WtPrice 0.0001 0.0002 24
ResHall 0 0 0
Male −0.4016 0.076 100
Public 1.064 2.901 14
Religion 2.48 2.641 56
Urban −5.151 1.197 100

son, 1997; Murtaugh et al., 1999; Porter, 2000; Smith et al., 2001), we find that
better prepared student bodies, as measured by high school grade point average
(GPA) and SAT scores, improve graduation rates. The coefficients for the per-
centage of the institution in the top 10% of their high school class and the SAT
score of the bottom quartile were positive and significant with Pr(β ≠ 0/D) =
100%. Our results with respect to the racial composition of the institution are
quite interesting, in that the percentage of African American, Asian, and His-
panic students had no influence on the prediction of graduation rates. Only the
percentage of Native American students received positive support, Pr(β ≠ 0/D) =
86%, for having an effect on graduation rates. The coefficient for the percentage
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of Native American students is negative. Further research needs to examine
whether this effect is due to the small number of Native Americans at the institu-
tions in our sample, or if it is indicative of the special needs of Native Ameri-
cans relative to other racial groups.

In terms of the other variables we found very strong evidence, Pr(β ≠ 0/D) =
100%, that average age, percentage of male students, and urban environments
had a negative effect on graduation rates. There was weak evidence, Pr(β ≠
0/D) = 56%, for religious institutions having a positive effect on graduation rates
and marginal evidence of a positive effect for the percentage of faculty with a
PhD and alumni giving.

Not only are we interested in the estimated effects of each of the variables
on graduation rates, but also in their combined ability to predict graduation
rates. We randomly split the data into subsets containing one half of the data.
The results (not shown) generated by Bayesian model averaging applied to one
half of the data are quite similar to those found in the complete data set. Vari-
ables that were found to have a strong effect on predicting graduation rates in
the full data set are also supported in the sample. The only difference is in the
reported effect of SAT scores. In the full sample the posterior effect probability
for SAT scores of the lowest quartile was 100%, while that for the highest
quartile was 0%. Thus in the full data set each model included the SAT score
of the lowest quartile and excluded that of the highest. The data in the sample
though included either the high SAT score, Pr(β ≠ 0/D) = 78% or the low SAT
score Pr(β ≠ 0/D) = 22% in each of the models averaged over. Thus, the data
clearly suggest that SAT scores influence graduation rates and that only one
measure is needed, but one is not able to determine which one should be used
with certainty. We then use these estimated coefficients to make predictions of
graduation rates from the data not used to build the model. The predicted mean
squared error of our BMA estimates is 60.69.

The variable selection methods used here for comparison purposes are minim-
izing Mallow’s Cp, and Efroymson’s stepwise method, and maximizing adjusted
R 2. In our random sample, Mallow’s Cp and Efroymson’s methods both selected
the same model, which had a predicted mean squared error of 68.12. Results
appear in Table 4. Maximizing adjusted R 2 resulted in the same variables in the
model specification, along with the inclusion of the percentage of the student
body that are Asian. The mean squared error of this model was 72.95. As we
can see, standard variable selection methods include several variables that BMA
finds have little to no effect on the prediction of graduation rates when account-
ing for uncertainty in model specification. Further, BMA provides improved
predictive performance as is evident in its lower mean squared error. This analy-
sis was repeated on 20 different random samples from the data. The results find
that BMA has the lowest MSE (64.17) on average relative to that of Mallow’s
Cp (68.22), adjusted R 2 (66.30), and Efroymson’s method (67.25).



39MODEL UNCERTAINTY AND GRADUATION RATES

TABLE 4. Regression Results using Stepwise, Mallow’s Cp, and Adjusted R2 on a
Random Sample

Stepwise & Cp Adjusted R2

Predictor Coefficient Std. Error Coefficient Std. Error

Intercept 98.64 31.97 105.3 32.39
NativeAm −1.851 0.6017 −1.821 0.6008
Asian 0.1713 0.1461
Hispanic −0.3536 0.1974 −0.4595 0.2167
Enroll 0.0002 0.0001 0.0001 0.0001
Age −3.12 0.8435 −3.265 0.8506
Stud/Fac −0.6275 0.3241 −0.6493 0.3238
Class20 −0.2337 0.0858 −0.2352 0.0856
TopTen 0.2224 0.0665 0.1958 0.0701
Alumni 0.2139 0.1221 0.2453 0.1247
HighSat 0.0337 0.0183 0.0333 0.0182
WtPrice 0.0008 0.0003 0.0007 0.0003
Male −0.3797 0.1007 −0.404 0.1025
Public 7.433 4.203 6.95 4.213
Religion 7.8 2.856 8.093 2.86
Urban −5.886 1.731 −6.474 1.799

N 92 92
R2 .8693 .8716
SEE 6.55 6.53
PMSE 68.125 72.951

CONCLUSION

Variable selection is an important part of empirical research. The choice of
variables to include as controls should be guided by theory, yet often there is no
single theory that explains complex social relations. Measurement of theoretical
effects further complicates a researcher’s choice of model specification. Statisti-
cal methods of variable subset selection may aid in this choice, but are based
on no theoretical foundation. As a result of these problems, it is common to find
researchers who examine the same phenomena using several different model
specifications. The use of different models may then lead to contrary findings.
Our analysis of graduation rates at Doctoral I universities has shown that vari-
able selection influences the effects of estimated coefficients, their statistical
significance, and the overall prediction of the model. This creates uncertainty to
the true relationship among the data.

As an empirical researcher it would be nice to account for uncertainty in
variable selection in our results. Our article has discussed the use of BMA as a
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solution to this problem. In averaging over models that are supported by the
data, we are able to account explicitly for uncertainty in our predictions. Here
we have demonstrated that BMA provides better out-of-sample predictions of
graduation rates than do the standard statistical methods of variable selection
that make prediction based on a single model. On average, our out-of-sample
forecast error for BMA, as measured by predictive mean squared error, was
6.3%, 3.3%, and 4.8% lower than that found by minimizing Mallow’s Cp, maxi-
mizing adjusted R 2, and Efroymson’s stepwise method, respectively.

In addition to improving the prediction of graduation rates, BMA also helps
institutions to determine more accurately which institutional factors are impor-
tant to educational outcomes. The results of this article indicate that increasing
the percentage of the student body that are Native American, percentage of the
student body that are male, and average age each decrease an institution’s gradu-
ation rate. Evidence also supports that increasing the percentage of the student
body in the top 10% of their high school class and the SAT score of the lowest
quartile both increase graduation rates. We also found that institutions in urban
environments had lower graduation rates. These findings indicate characteristics
of individuals with greater need and to which more institutional resources need
to be targeted.

The primary limitation of implementing BMA is that it is not part of the
standard statistical packages familiar to most in education. To implement BMA
requires access to S-Plus statistical software, publicly available programs, and
limited knowledge of computer programming. Despite this limitation the results
are worth the effort. BMA has improved our ability to explain variation in grad-
uation rates and has also improved our ability to predict graduation rates. Both
of these factors are important to understand fully the relationship between the
inputs and environment that generate positive student outcomes, such as gradua-
tion rates. It is a better understanding of these factors that will lead to policy
that best promotes such an outcome.
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